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Introduction 
Rhinoceros1 is a 3D computer-aided design (CAD) application developed for Windows since 1992 by 

Robert McNeel and Associates (Seattle, WA, USA)2. It is popularly known as “Rhino”, and is used by 

more than 150,000 professionals around the globe for its powerful freeform modeling. Rhino’s license 

fees start below $1,000, yet its functionality is similar to that found in products typically costing 20 to 50 

times more. It is based on the open 3DM file format, which is available to any software developer for 

reading/writing in the framework of the openNURBS initiative3. As a result, Rhino is bundled with 120+ 

third-party plug-ins4. Its interface, features, and commands are familiar to CAD users, and allow them to 

easily work out complex 3D design problems. Rhino, however, lacks of one important capability: it 

cannot specify the behavior that should occur when its 3D models are changed. 

CAD models are more than just collections of geometric shapes; they also contain design information 

called design intent. Design intent governs the relationships between features in a part, and between 

parts in assemblies. It can be likened to a how-to specification, for when the geometry is modified in the 

future. Usually changes in one part of the model require intelligent modification of other features and 

parts. Design intent answers questions, like “What happens if the diameter of this hole is changed?”, 

“What if this length is increased?”, and “What if this part is moved?”.  

Rhino lacks design intent. To remedy this, we present a tool called Rhino Assembly that captures design 

intent for Rhino. As a plug-in application, it runs directly in the Rhino environment. It allows Rhino users 

to use geometric constraints and driving dimensions for intelligent modification of 3D models consisting 

of rigid parts. Once the plug-in is installed, users can easily assemble complex mechanisms and then test 

the kinematics to see moving mechanisms in action. The simplicity of the Rhino Assembly user interface 

hides the strong mathematical algorithms used in this software, which come from the field of geometric 

constraint solving. The corresponding computational technology has been under development since 

2001 by LEDAS Ltd., a Russian science-intensive software development company. The technology is 

mature enough to be used in many CAD, CAM (computer-aided manufacturing), and CAE (computer-

aided engineering) packages, most of them now available on the market commercially5,6,7,8,9,10. 

Since 1999 LEDAS has specialized in creating parametric engines for CAD/CAM/CAE and other 

applications. Recently LEDAS announced its own line of end-user products under the Driving Dimensions 

trademark. Driving Dimensions is a set of plug-in modules that provide advanced parameterization 

capabilities to popular 2D and 3D modeling systems, such as SketchUp and Rhino. Driving Dimensions 

are based on Variational Direct Modeling technology11, which uses history-free editing model elements, 

preserves design intent, as expressed by explicit and implicit driving dimensions (linear, angular, radial) 

and geometric constraints. Simultaneous satisfaction of geometric and dimensional constraints is 

achieved with LGS 2D/3D geometric constraint solvers12,13, which LEDAS makes available for licensing to 

all CAD developers. 

This paper presents the functionality of Rhino Assembly, the first Driving Dimensions plug-in for Rhino, 

and describes the conceptual ideas behind it. The paper concludes with an outline of our ideas for 

future products for Rhino.  



 

 

Design Intent in History-Free Environment 
Experienced mechanical CAD (MCAD) designers will find that Rhino’s user interface is similar to that of 

other mainstream systems. Designers follow the usual procedure: draw 2D contours, extrude them to 

make 3D solids, blend edges, add holes, and so on (Fig. 1). 

         
(a)                                                                                         (b) 

        
(c)                                                                                          (d) 

Fig. 1. Solid modeling in Rhino: (a) creating a 2D contour, (b) extruding it to make a solid,  

(c) blending its edges, and (d) adding holes 

There is, however, a strong difference between Rhino and other MCAD systems, such as Pro/ENGINEER 

and SolidWorks, in how models are edited. In Rhino, for example, it is not possible to change the 

diameter of holes by simply clicking on them. Rhino cannot change the radii of fillets. And when the 

initial 2D contour is edited, the 3D solid does not change. This type of behavior is unexpected by typical 

MCAD users, who would become rather disappointed in the software. 

The reason of this behavior is very simple: while most MCAD systems are history-based, but Rhino is 

not. It does not remember changes, known collectively as design history, which is a common way to 

express the design intent. History is like a recipe: when you want to change something in the model, you 

first modify the recipe, and then the CAD system automatically rebuilds the model according to modified 

recipe. The recipe, or history tree, is usually implemented on top of dumb geometry, the so-called BRep 

(boundary representation) of a solid model. 



 

 

The history-based approach is common throughout nearly all modern MCAD systems; but there is an 

alternative available that allows design intent to be expressed in history-free environments. The 

approach consists of applying geometric constraints, driving dimensions, engineering equations, and 

other declarative specifications on top of BRep. (For simplicity, we will use the word constraints for all of 

these.)  

Constraints have nothing common with design history. They can be added to the model at any time: 

when you create the model and when you modify it. Moreover, you can add constraints to dumb 

geometry obtained from other sources: downloaded from public 3D model databases, imported from 

other CAD systems, translated from IGES/STEP files, and so on. The primary problem with history is that 

it cannot be added to existing models; history is only created as you create a new model. That’s why the 

history-based approach cannot work in many situations*. 

Constraints are simpler than history trees because they have no order. All constraints are equal and all 

are satisfied simultaneously. This is very different from rebuilding a model using a history tree. At any 

time you can remove any existing constraints with no impact on other constraints, since all are 

independent of each other. Manipulation with unordered lists on independent entities is simpler: you 

easily sort and filter constraints by their name, type, and argument.  

Some constraints, however, do have the same parameters as do features in history trees. These 

parameterized constraints are called “driving dimensions,” because they usually correspond to lengths, 

radii, distances, and angles of objects in models. Driving, because models can be driven with using 

parameters. For example, when you edit the value of a driving distance value, the model is 

automatically changed to satisfy the new value. This is different from the usual type of (driven) 

dimensions, which just measure objects, and are recomputed when you modify the geometry. You can 

link the parameters of driving dimensions and free variables with engineering equations, using both 

standard math functions and external procedures. 

Summarizing, constraints are a powerful way to express your design intent in history-free environments. 

You can add, remove, and modify them easily. Naturally, you can combine them with other knowledge-

based engineering features. In the remainder of this paper, we consider the LEDAS implementation of 

constraints through the Rhino Assembly plug-in.  

                                                           
*
 Some MCAD systems seem to use intelligent tools to restore history trees from dumb geometry, but they work 

properly only for typical models. 



 

 

Assembly Design in Rhino with Constraints and Driving Dimensions 
Assembly design is a typical application where constraints are commonly used, even in history-based 

systems. The Rhino Assembly plug-in is the first LEDAS Driving Dimensions application for McNeel & 

Associates’ Rhinoceros software. It was chosen as the first one, because the corresponding functionality 

is familiar to most MCAD users. 

There are two well-known approaches in MCAD to assembling parts: top-down and bottom-up. In the 

top-down approach, you begin by designing an empty mechanism, and then create the geometry for its 

parts, one by one. You place them according to your design concept. By using this approach, you can 

design simple assemblies in Rhino, such as a piston engine. (See Fig. 2.) 

 

Fig. 2. A simple piston engine in Rhino 

But the model contains no design intent, just as any other model in Rhino! For example, when you move 

the piston inside the cylinder, Rhino gives you the incorrect result shown in Fig. 3a: only one part was 

moved. The evident design intent, however, was to obtain the result illustrated by Fig. 3b, where 

translation of the piston implies the rotation of the crankshaft connected with the piston via the rod and 

a pin. How does one get this working correctly in Rhino? 



 

 

        
(a)                                                                                         (b) 

Fig. 3. Movement of the piston: (a) design intent is broken (default Rhino behavior),  

(b) design intent is kept with using Rhino Assembly plug-in 

Imagine that you have the piston parts, either taken from a standard parts catalogue or designed just 

now. (See Fig. 4.) Instead of the top-down approach, in this case the bottom-up approach to assembly 

design should be employed: you position each part in 3D space with respect to the others. In Rhino, 

however, this is not very easy as it requires much manipulation by hand. 

 

Fig. 4. How to assemble disjoint parts together? 

How to keep the design intent intact when you move parts? How to simplify yet speed-up the bottom-

up assembly process? Rhino Assembly plug-in clearly answers these questions. You can obtain a free 30-

day evaluation copy from our Web site at www.DrivingDimensions.com.  

After installing the plug-in, you will find the following new toolbar in the familiar Rhino environment: 

  

Fig. 5. Rhino Assembly toolbar 

http://www.drivingdimensions.com/


 

 

By using this toolbar, you can easily add geometric constraints between rigid parts. They can be 

appropriately placed in position, as shown by Fig. 2, or left scattered, as in Fig. 4.  

Bottom-Up Design 

Let’s begin first with the parts scattered, and then assemble the piston (see Fig. 6a). To put the pin 

inside the round hole of the piston, you need only three mouse clicks with Rhino Assembly plug-in: 

1) Click the “Add Concentricity” icon  on the Assembly toolbar. 

2) Click the cylindrical surface of the hole in the piston. 

3) Click the cylindrical surface of the pin. 

When you click the “Add Concentricity” or similar icon, you are asked to select the arguments for the 

new constraint. Once you choose the arguments, the constraint is created and resolved immediately 

(simultaneously with other constraints already present in the model). After creating the concentricity 

constraint between the pin and the piston’s hole, Rhino immediately creates a placement similar to that 

shown in Fig. 6b, which can be then arranged to the final one (Fig. 6c), after applying a tangency 

constraint† between one flank of the pin and outer cylindrical surface of the piston (three more mouse 

clicks staring with “Add Tangency” icon).  

The next step is to join the piston with the connecting rod. First add concentricity between the smaller 

round hole of the rod and cylindrical surface of the pin. You should use Rhino’s pan, zoom and rotate 

commands to simplify the selection process. The result should look like Fig. 6d.  

The work remaining is to shift the rod along the pin to center it. For this, apply a coincidence constraint 

between the corresponding planar faces of the piston and the rod to make them mate each other (Fig. 

6e). After a total of just twelve mouse clicks (plus some pan, zoom, and rotate commands), the piston is 

assembled! 

                                                           
†
 Strictly speaking, the tangency constraint is not a correct choice here, because the ends of the pin will stick out of 

the piston; in the next section, we correct this problem using distance driving dimensions. 



 

 

           
(a)                                                          (b)                                                          (c) 

      
(d)                                                          (e) 

Fig. 6. Assembling piston: step by step 

It is important to realize that the Rhino Assembly plug-in is much more than just a tool for placing rigid 

parts together easily. When you now move and rotate the piston (with Rhino’s transform commands), 

you see both the pin and connecting rod follow the piston correctly. It’s not a magic – it’s that you 

created a model that encapsulates not just geometry, but also design intent. 

But the assembly is not yet finished, for the piston needs to be placed inside the cylinder. By now you 

should know how to do it. (If not, follow this step: apply the concentricity constraint between the outer 

surface of the piston and the inner surface of the cylinder.) Our Rhino Assembly plug-in considers all 

surfaces as infinite; if after this operation the piston is not placed in the cylinder correctly (as in Fig. 7a), 

move it to the desired position with the mouse. You now know that when you move the piston, all 

subparts (pin, rod) are moved together. 

Now something more interesting occurs: when you move the piston, the cylinder is always concentric to 

it! This allows you to easily place the piston at the desired position along the cylinder. (See Fig. 7b.) 



 

 

         
(a)                                                                           (b) 

Fig. 7. Placing the assembled piston inside the cylinder 

To place the crankshaft, apply a concentricity constraint between the smaller of its cylindrical surfaces 

and the large hole of the connecting rod. Move the crank along the hole (or apply a coincidence 

constraint between its flank and the planar surface of the rod). You may end up with a placement similar 

to one shown in Fig. 8a; this is incorrect, because the crank and the cylinder penetrate each other. To 

correct this problem, move either the piston or the cylinder to the desired position. Since the model 

contains design intent (as expressed through assembly constraints), any movement will be intelligent; 

i.e., the piston engine will not break into disjoint parts as you move parts relative to each other as you 

find the best positioning. 

         
(a)                                                                           (b) 

Fig. 8. Finishing steps in assembling the piston engine 

To finalize the assembly, fix the cylinder and the rotation axis of the crankshaft. Click on the “Add 

Fixation” icon and select the cylinder. Then add another fixation constraint (this time select any 

cylindrical surface of the crankshaft except one already connected with the rod). 

Managing Constraints and Driving Dimensions 

To review the list of constraints added to the model, click the Show Assembly Manager icon in the 

Assembly toolbar, and then navigate through the window showed in Fig. 9. You may find it useful to 

dock this small window to one side of the Rhino window. 



 

 

 

Fig. 9. Assembly Manager window 

When you click on a specific constraint in the Assembly Manager, its arguments are highlighted 

automatically, including the geometric edges and faces connected with this constraint. This lets you see 

the design intent easily. Moreover, since constraints are stored with the model in its 3DM file, you can 

share the design intent with your colleagues; any of them who have the Rhino Assembly plug-in installed 

can open the Assembly Manager to see your design intent. 

Assembly Manager not only shows which constraints were added to the model, but also edits them. The 

simplest edit is changing the constraint’s default name. For example, you may wish to rename 

“Concentricity 1” to “Piston-pin concentricity” – to simplify the transfer of knowledge from you to 

others who might use this model. To rename constraints, double click “Concentricity 1” in the Assembly 

Manager, and then edit the Name field. (The Constraint Properties window opens automatically; see Fig. 

10.) While the Constraint Properties is open, you don’t need to double click the names of other 

constraints; one click is enough to edit. Again, you may dock the Constraint Properties window below (or 

above) the Assembly Manager window to easily access this tool in the future. 

 

Fig. 10. Constraint Properties window 

Assembly Manager can be used to remove constraints that are no longer needed, such as those that 

result from design intent changes. For example, when we put the pin inside the piston, we applied a 

tangency constraint between the flank of the pin and the outer cylindrical surface of the piston. This 

action, however, is a simplification, because a real pin would be placed completely inside the piston – 

pin parts that stick out scrape the side of the cylinder. We can correct this error: first, remove the 

tangency constraint by selecting it in the Assembly Manager, and then pressing the Del key on the 

keyboard. We will now replace the tangency constraint with a distance driving dimension. 

Driving dimensions are another powerful tool introduced with the Rhino Assembly plug-in. Driving 

dimensions are similar to the geometric constraints described above (such as concentricity, tangency, 



 

 

coincidence), but differ from them in one important area: they have parametric values. Let’s study the 

example of placing a distance driving dimension between the pin’s flank and the piston’s cylinder. 

Click the Add Distance icon  in the Rhino Assembly toolbar, and then select the same surfaces as 

before in the case of tangency constraint: the flank of the pin and the outer cylinder of the piston. You 

are prompted to enter the distance value; enter the desired value to immediately see the effect. (See 

Fig. 11.) 

  
(a)                                                                    (b) 

Fig. 11. Using Distance Driving Dimension to control the exact placement of the wrist inside the piston: 

(a) before, (b) after 

If you don’t know the required value, accept the current one by pressing Enter key. You can later adjust 

it with the Constraint Properties window. When you select a driving dimension in the Assembly 

Manager, the window of Fig. 12 appears. Use the spin buttons on the right side of the Value field to 

adjust the values of dimensions. Each time you increase or decrease a value, the model is automatically 

updated to satisfy the new condition. 

  

Fig. 12. Driving Dimension properties window 

*** 

Let us summarize what we have learned about Rhino Assembly: 



 

 

1. Rhino Assembly simplifies bottom-up assembly design. Your design work is sped up significantly, 

because you are able to assemble a piston engine in just a dozen mouse clicks! 

2. Rhino Assembly adds design intent to dumb geometry. You have significant control over your 

design, because when you move parts, they move in accordance with the assembly constraints 

and driving dimensions you put between them. Mechanisms remain assembled; they never 

explode into disjoint parts. 

The Rhino Assembly plug-in supports broad range of geometric constraints and driving dimensions: 

fixation, concentricity, coincidence, parallelism, perpendicularity, tangency, distance, angle, and rigid 

set. It is not possible to cover all of them in one paper, and so readers are welcome to find a detailed 

description of each tool at www.DrivingDimensions.com/Rhino/help.php. 

At this point we have not yet listed all the advantages of Rhino Assemblies. We continue to do so in the 

next section. 

Kinematic Simulation 
When you design mechanisms in Rhino and other MCAD software, most likely you want to see them in 

action. Most mechanisms contain moving parts, and so an important part of the design process is to 

watch their trajectories as they move – before they are manufactured! You may find that some 

trajectories are not possible, because parts clash with each other or because of incorrect geometry. In 

this case, you must edit the part geometry or change the placement of parts inside the assembly.  

The Rhino Assembly plug-in simulates the kinematics of mechanisms. In this section, we explain how 

using the same example of the piston engine. 

To force the crankshaft to rotate about its axis, add an angular driving dimension to control the angle of 

rotation. To proceed, click the Add Angle icon on the toolbar, and then select the planar face on the 

crank and bottom planar face of the cylinder. (See Fig. 13.) Before accepting the proposed value, select 

the axis for the angle. Ordinary 3D angles between two planes can be measured between 0 and 180 

only; if an axis is orthogonal to both planes, the angle between them can be in the range of 0 to 360. 

To select an axis, enter “c,” and then select the cylindrical (rotational) surface of the crankshaft. Finally, 

enter the desired value for the angle. 

  
(a)                                                                     (b) 

Fig. 13. Creating angular driving dimension between the engine parts (a) and changing its value (b) 

http://www.drivingdimensions.com/Rhino/help.php


 

 

After placing the angular driving dimension, you can edit its value using the keyboard or the dialog box’s 

spin buttons. Immediately, the mechanism reacts to the changes. However, the better way to see 

mechanisms in action is by employing the Rhino Assembly plug-in’s animation feature.  

Animations vary the value of driving dimensions at given intervals and steps, automatically repositioning 

parts according to the values. Animations take into account all constraints that express design intent in 

the model. Animations are recorded almost instantly, in background mode, and then can be replayed 

several times as you observe the mechanism in action. 

The Constraint Properties window has an Animation section for driving dimensions (see Fig. 12). Two 

input fields specify the number of frames and the animation’s duration in seconds. The other values 

required for this example are the start and end angles; let’s enter 0 and 360 for the angle. Click Animate 

at the bottom of the Constraint Properties window to see the slider window of Fig. 14. Its controls are 

familiar to anyone who has used software video or audio players. When you press the Start button (blue 

triangle), the animation is replayed immediately. You can press the Pause button at any time to halt the 

animation. The controls allow you to view the initial or final frames directly, as well as jump to the next 

or previous frames. Check the Repeat box to loop the animation endlessly (until you stop it). 

 

Fig. 14. Assembly Animation window with slider 

An important aspect of the Rhino Assembly plug-in is the ability to apply the pan, rotate and zoom 

commands during animation. This allows you to see the animation in 3D from any point of view; the 

viewpoint can be dynamically modified by the user at any time during the animation. This function 

provides a lifelike experience of the kinematics in your mechanism. 

*** 

Let’s add to the list of added-value summary of the Rhino Assembly plug-in begun in the previous 

section: 

3. Rhino Assembly simulates the kinematics of mechanisms with movable parts. With driving 

dimensions, you can control the relative positions of parts, automatically and in real time. 

4. Rhino Assembly animates lifelike experiences. You can repair and improve mechanisms before 

manufacture. 

To learn more about the animation feature of the Rhino Assembly plug-in, please visit our help page at 

www.DrivingDimensions.com/Rhino/help.php to find a detailed description of each tool. 

What’s Next 
The preliminary beta version of Rhino Assembly plug-in was launched in June 2009 under the trade 

name of “Driving Dimensions for Rhino.”14. Since then, more than 3,000 Rhino users downloaded it from 

www.DrivingDimensions.com. LEDAS developers appreciated the useful comments made by Rhino 

users, resellers, and McNeel’s own experts, and the result was version 1.0 released in November 2009. 

Some ideas are waiting for version 2.0, which will be released in 2010. But there is something special 

that is needs to be announced now. 

http://www.drivingdimensions.com/Rhino/help.php
http://www.drivingdimensions.com/


 

 

As we noted, the Rhino Assembly plug-in works with rigid parts; it does not modify the geometry 

internal to parts. It just places all parts relative to each other through translation and rotation. In some 

cases, however, this is not enough. For instance, we may need to modify the length of the connecting 

rod in our piston engine to avoid collisions.  

To make changes intelligently means modifying Rhino’s 3D geometric shapes yet keeping their design 

intent. We will provide the answer in Part II of this white paper. In it, we will present a Rhino plug-in for 

history-free 3D geometry editing using the same geometric constraints and driving dimensions. We plan 

to release the first public beta by the end of 2009 at www.DrivingDimensions.com.  

http://www.drivingdimensions.com/
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